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= How do these tasks /ook”? What do they indicate? that outputs the label for each image. . P> 03] .';]Q l— Ag; . 9, | ..-;_‘ HM%.

| Task Discovery: finds different generalizable tasks automatically.|

= Generalizable tasks reflect the inductive biases of NNs . Use meta-optimization: o RN ..HE ~ = v.;«{._1 o R B B
= can help us understand deep learning better.  Outer loop: update the task network that provides labels = Some tasks are not easy to interpret visually by humans, and are not meant to be!

- Inner loop: compute the AS of a given task (see Sec. 5.4 of the paper)
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